
Can they hear me now?: A case for a client-assisted
approach to monitoring wide-area wireless networks

Sayandeep Sen∗, Jongwon Yoon∗, Joshua Hare∗, Justin Ormont, Suman Banerjee
University of Wisconsin-Madison

{sdsen, yoonj, hare, ormont, suman}@cs.wisc.edu

ABSTRACT
We present WiScape, a framework for measuring and under-
standing the behavior of wide-area wireless networks, e.g.,
city-wide or nation-wide cellular data networks using active
participation from clients. The goal of WiScape is to provide
a coarse-grained view of a wide-area wireless landscape that
allows operators and users to understand broad performance
characteristics of the network. In this approach a central-
ized controller instructs clients to collect measurement sam-
ples over time and space in an opportunistic manner. To
limit the overheads of this measurement framework, WiS-
cape partitions the world into zones, contiguous areas with
relatively similar user experiences, and partitions time into
zone-specific epochs over which network statistics are rela-
tively stable. For each epoch in each zone, WiScape takes
a minimalistic view — it attempts to collect a small num-
ber of measurement samples to adequately characterize the
client experience in that zone and epoch, thereby limiting
the bandwidth and energy overheads at client devices. For
this effort, we have collected ground truth measurements
for up to three different commercial cellular wireless net-
works across (i) an area of more than 155 square kilometer
in and around Madison, WI, in the USA, (ii) a road stretch
of more than 240 kilometers between Madison and Chicago,
and (iii) locations in New Brunswick and Princeton, New
Jersey, USA, for a period of more than 1 year. We jus-
tify various design choices of WiScape through this data,
demonstrate that WiScape can provide an accurate perfor-
mance characterization of these networks over a wide area
(within 4% error for more than 70% of instances) with a
low overhead on the clients, and illustrate multiple appli-
cations of this framework through a sustained and ongoing
measurement study.
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Figure 1: A Snapshot of TCP throughput distri-
bution within our NetB network, covering a 155 sq.
kilometer city-wide area. Throughputs are collected
based on 1MB downloads, collected using WiScape.
Each dot corresponds to a circular area of radius 600
meters.
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works]: Network Architecture and Design—Wireless Com-
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1. INTRODUCTION
The ability to observe an entire network’s performance

is an important precursor to understanding and predicting
its behavior, and in debugging its performance problems.
Gathering such detailed observations at a network-scale is
challenging for any network, whether wired or wireless.

In wired networks, such as enterprises or ISPs, operators
typically deploy multiple monitoring nodes in carefully cho-
sen vantage points within the network to capture and aggre-
gate necessary information [1]. In the context of WLANs,



multiple early efforts emulated these wired approaches by
deploying similar monitoring nodes in the wired part of
the network [2]. However, wired-only observations fail to
capture the impact of location-specific RF characteristics.
Hence, more recent WLAN monitoring efforts, e.g., Jig-
saw [3], chose to deploy numerous wireless sniffers across
an entire physical space, e.g., a campus building. While
deployment of such a widespread wireless monitoring infras-
tructure is still feasible in building-wide settings, the logis-
tics of densely deploying and managing such infrastructure
is impractical when the wireless networks are significantly
larger in scale. In particular, it is virtually impossible to
densely deploy wireless sniffers to monitor the performance
of a city-scale or a nation-scale cellular data network.

In this paper, we examine a different solution for moni-
toring and measuring such large-scale wireless networks, one
that leverages the potential assistance of a large number of
clients. More specifically, we present WiScape, a framework
to characterize the wireless landscape, using data collected
from three commercial cellular data networks over more than
one year across large regions: (i) more than 155 square kilo-
meters in and around Madison, WI, in the USA, (ii) a road
stretch of 240 kilometers between Madison and Chicago, and
(iii) targeted regions in the cities of New Brunswick and
Princeton in New Jersey, USA. Figure 1 presents a snap-
shot of some of our measurement data collected from one
of the monitored cellular networks across Madison, WI. The
figure partitions the entire area into coarse-grained zones
(each zone is a 0.2 sq.km.), with only a sampled subset of
zones shown, and the size of the circles represent the average
values of the TCP download throughputs (the shade of the
circle represent the variance of throughput samples).

In this paper, we also demonstrate, via experimentation,
how network operators and users (applications) can benefit
from data accumulated by the WiScape framework. For in-
stance, in our experiments we found that a network operator
can use WiScape to easily identify significant changes in user
experiences within their own network, while an application
such as MAR [4] (which uses multiple cellular network inter-
faces to provide aggregated wireless bandwidth into vehicles)
can improve its own performance by up to 41% by leveraging
WiScape collected data. Finally, an approach such as WiS-
cape can potentially serve as a performance watchdog and
can provide a neutral view of different commercial wireless
networks over time and space.

Client-assisted monitoring in WiScape
Cellular data networks nationwide are placing increasing em-
phasis on performance, mobility and wide-area coverage. As
these networks attempt to provide ubiquitous connectivity
to large geographic areas, operators continue to seek better
tools to observe network performance at all locations. Each
network operator sends out its RF monitoring trucks during
initial deployment of cellular towers and periodically after
that to various neighborhoods. Occasionally, if the operator
receives a large volume of consumer complaints of network
performance from a certain area, they would also conduct
additional RF surveys at those specific locations [5]. Each
such RF survey is quite labor-intensive.

Furthermore, user complaints are unlikely to capture a
vast majority of network performance issues that occur. Users
often only complain when a problem is particularly serious

and persistent, causing major disruptions to the user over a
long period of time.

In WiScape we propose to measure the network’s perfor-
mance, as perceived by the clients and through the help of
clients. More specifically, in this approach diverse mobile
clients measures network properties based on instructions
from a central controller to map out the performance across
the entire network. Since the clients are naturally mobile,
they are perfectly positioned to monitor the network per-
formance from various vantage points. If implemented suc-
cessfully, this approach can mitigate significant costs that
operators might otherwise have to incur in order to collect
data of the same level of richness and detail. In addition,
such an approach provides us with unique data from the
client’s point of view, which is not available otherwise.

This high-level idea is actually a fairly common one and
different variants of it have been referred to as crowd-sourcing,
war-driving, and participatory sensing. Such approaches
have been used to collect locations of WiFi APs worldwide,
and have been proposed in various types of health-related
applications (air pollution, audio noise level, and radiation
exposure monitoring across a city), as well as social inter-
actions (detecting presence of friends nearby) [6, 7]. In the
wireless setting, there are now ongoing efforts that attempt
a similar approach to collect performance data of different
cellular networks. Examples include RootWireless [8] a com-
pany that distributes mobile phone applications that collect
measurements from volunteers to generate coverage maps
of cellular operators, the 3gtest application from U Michi-
gan [9] and AT&T’s “Mark the Spot” iPhone application
that allows iPhone users to record the location of where a
phone call was dropped.

While the main idea is relatively simple, the core techni-
cal challenge in designing an effective, scalable, and useful
system lies in its ability to manage the volume of measure-
ments required and the manner in which measurement tasks
can be coordinated across multiple clients. We comment on
this issue next.
WiScape approach and usage scenarios: In a client-
based monitoring system, if all clients are requested to col-
lect performance measurements all the time, the volume of
such measurement traffic could prohibit useful activity in
the network. Such an effort could also place a significant
burden on the client devices leading to quicker depletion of
the limited battery power of these devices. Therefore, the
key in designing a client-based monitoring infrastructure is
to ensure that the volume of data collected is low, yet is
adequate to present the operators and users with a broad
understanding of network performance. At the same time,
since this approach is able to collect measurements only from
specific locations clients are available at any given instant,
the number of measurement samples available from any ar-
bitrary location and at any desired time is likely to be quite
sparse, often zero, and hence not statistically significant.
Therefore, in WiScape we need to aggregate collected mea-
surements from clients, both in time and space so that it is
statistically significant for observations.

Burdened by above considerations, we partition the world
into zones (around 0.2 sq. km. each) and time in each zone
into epochs (a few tens of minutes). We define zones such
that measurements within each zone have relatively low vari-
ance most of the time. We define epochs such that statistics
across multiple consecutive epochs of the same zone have



low variance. (Note that epochs may have smaller dura-
tions in zones with rapidly changing performance observed
by clients.) In other words, each epoch for each zone is the
smallest time-space granularity that WiScape attempts to
accurately estimate to provide a stable measure. Based on
our models, we require around 100 measurement samples to
estimate network layer performance of each epoch of a zone,
such as throughput, delay, loss, and jitter. We believe for
most zones this measurement volume is easy to obtain, espe-
cially for zones in dense urban areas with many users. which
often require greater attention from network operators.

The nature of data collection in WiScape also dictates
the type of its use. Given our intent of collecting a small
amount of data, WiScape will miss many of the short-term
and transient variations, e.g., as a result of sudden burst
of active users arriving in a given location and then dis-
appearing within a few minutes. However, any persistent
network behavior (persistent in the order of an epoch, typi-
cally tens of minutes) will be captured by our system quite
accurately. We show this through multiple examples in Sec-
tion 4. An interesting such example was WiScape’s detection
of 4× increase in latencies in a specific zone of two cellular
networks in Madison, encompassing the UW-Madison foot-
ball stadium, for nearly 3 hours on a football Saturday when
nearly 80,000 people packed into the stadium for the game.

In the rest of the paper, we explain how we designed
the WiScape framework through detailed measurements and
statistical analysis of the data and make the following key
contributions:

• We establish the feasibility of client-assisted monitor-
ing of wide area wireless networks by carrying out ex-
tensive measurements over a duration of more than
1 year, spanning a geographical area of more than
155 sq.km. across multiple cities, a long road stretch
of 240 k.m. and across three 3G cellular networks.
Traces used for the paper will be made publicly avail-
able through CRAWDAD [10].

• We design and implement WiScape — a monitoring
system that bins measurements into epochs and zones
and collects a relatively small number of measurements
per epoch per zone. We establish appropriate parame-
ters for epochs, zones, and the number of measurement
samples through detailed data collection, analysis, and
experimentation.

• We demonstrate the benefits of WiScape through mul-
tiple simple use cases: (i) to quickly detect somewhat
persistent changes to network behavior and alert net-
work operators of need to perform detailed investiga-
tions of such changes, (ii) to apply WiScape collected
data to improve the performance of multi-network ap-
plications like MAR and “multi-sim.”

In the next section, we present some details on our mea-
surement and data collection efforts used designing and eval-
uating different aspects of WiScape. Subsequently, in Sec-
tion 3, we present the overall design of WiScape including
related validation. In Section 4 we demonstrate some uses of
data collected by WiScape, and finally discuss related work
and present our conclusions in Sections 5 and 6 respectively.

2. PRELIMINARIES
Our measurement setup consists of a measurement coor-

dinator running on a desktop in our university laboratory,
with well provisioned connectivity to the Internet, that pe-
riodically requests and collects measurements from different
client devices (based on Windows and Linux platforms). In
our measurements, we have gathered data from three differ-
ent cellular networks with nation-wide footprints, referred
to as NetA , NetB , and NetC 1. The data collection pro-
cess has been ongoing in multiple stages for more than one
year now (Table 1) and different clients in our measurement
setup had different capabilities and characteristics as dis-
cussed next.

Data collection process: While we have collected mea-
surement data for both uplink and downlink, in this paper,
we focus on the downlink direction. This is motivated by the
observation that most of data traffic is downlink. Our data
collection has been done using multiple platforms, some of
which are mounted on vehicles (public transit buses in Madi-
son, intercity buses, as well as nodes mounted on personal
vehicles), while others are static.

Wide-area: The spatially biggest datasets are labeled Stan-
dalone and WiRover . The Standalone dataset was collected
using up to five public transit buses in Madison, covering an
approximate area of 155 sq. kilometer in this city. Linux-
based measurement nodes equipped with a single cellular
network interface (NetB ) were mounted on these buses for
data collection. These public transit buses typically run
from 6am to midnight and each particular bus gets randomly
assigned to different routes each day. Even in a single month,
this set of buses is able to cover a significant fraction of
Madison and its neighboring cities. The WiRover data col-
lection process is the newer incarnation of the Standalone
process, in which all of these bus-mounted nodes now are
equipped with two network interfaces (NetB and NetC ),
and provide free WiFi service to bus passengers using the
multi-network setup [13]. In addition to the public transit
buses of Madison, we also placed additional nodes on two
intercity buses between Madison and Chicago, a distance
of more than 240 kilometer. Over time, these buses gen-
erated multiple measurement values for each location along
this path stretch. We have not evaluated if any bias was
introduced by the relatively periodic nature of bus routes
on the collected data.

Spot: The vehicular data cannot provide us with long run-
ning contiguous measurements. To study cellular network
performance over a longer timescale, we selected some ad-
ditional indoor locations to continuously collect data for up
to 5 months. These included multiple locations in Madison,
WI, and Princeton and New Brunswick, NJ. We describe
our criteria for selecting the specific locations in Section 3.1.
These datasets provide a more detailed and fine-grained view
than is possible using with the vehicular collection methods
of our Wide-area data. We apply these datasets to under-
stand network performance over time for a given static lo-
cation as will be demonstrated in Section 3.2.1.

Region: This consists of multiple datasets: Proximate-
WI, Proximate-NJ, and Short segment. The two Proximate

1Since our goal for this paper currently is to explore a mea-
surement framework, and not to answer which of these net-
works perform best or worst in different locations, we did
not find it useful to reveal the identities of these nation-wide
cellular providers.



Networks
NetA GSM HSPA [11], Uplink (≤1.2Mbps), Downlink (≤ 7.2Mbps)
NetB CDMA2000 1xEV-DO Rev.A [12], Uplink (≤ 1.8Mbps), Downlink (≤ 3.1Mbps)
NetC CDMA2000 1xEV-DO Rev.A [12], Uplink (≤ 1.8Mbps), Downlink (≤ 3.1Mbps)

Hardware
Server 3 Desktops with well provisioned wired Internet connection
Client 3 Laptops with 3 cellular data cards & GPS

Measurement params
Transport protocol (TCP/UDP), Transmission duration (10sec∼5min)
Inter packet delay (1msec∼100msec, adaptively varies base on available capacity)
Download size (200 and 1200Bytes for UDP, 100Bytes∼2048Bytes for TCP)

Params logged Packet sequence number, Receive timestamp, GPS coordinates

Table 1: Measurement setup details.

Group Name Span Months Nets Location

Spot
Static-WI 5 locations 5 A, B, C Madison, WI
Static-NJ 2 locations 1 B, C New Brunswick, Princeton, NJ

Region
Proximate-WI Vicinity of the static locations 5 A, B, C Madison, WI
Proximate-NJ Vicinity of the static locations 1 B, C New Brunswick, Princeton, NJ
Short segment 20 km road stretch 3 A, B, C Madison, WI

Wide-area
WiRover 155 sq.km. city-wide area 6 B, C Madison, WI

and a 240 kilometer road stretch and Madison to Chicago
Standalone 155 sq.km. city-wide area 11 B Madison, WI

Table 2: Different data sets and details of locations. All measurements used TCP and UDP flows, except
Standalone which used ICMP pings instead of UDP flows.

datasets were collected in neighborhoods close to the previ-
ously selected Spot locations. All three datasets consist of
targeted measurement data to understand the feasibility of
composing infrequently collected measurement samples from
multiple (and potentially diverse) sources for estimating net-
work performance, as will be seen in Section 3.3. These mea-
surements were collected using client devices placed inside
personal automobiles and regularly driven over fixed routes.

All of our measurements reported in this paper were col-
lected using laptops or single-board computers equipped with
different models of cellular modems (some were USB-based
and others were PCMCIA).

Measurements collected: The Spot measurements and
Region measurements collected a specific set of performance
metric over three cellular networks, including TCP and UDP
throughput, UDP packet loss rate, application level jitter
measured in terms of Instantaneous Packet Delay Variation
(IPDV) [14], application level RTT, and ICMP-level RTT
(NetB only).

For the WiRover dataset, throughput measurements were
not conducted as they would had affected the network per-
formance experienced by the clients of the WiRover sys-
tem. Hence, we only collect latency measurements using
UDP pings, roughly 12 pings a minute. Details regarding
measurement settings for each dataset are summarized in
Table 2 and Table 1.

Effect of vehicular mobility on measurements: In
our effort to collect measurements from a vast region over
sustained durations, we were forced to utilize vehicles trav-
eling at varying speeds. To understand the effects of the
vehicular speeds on our data we analyzed the distribution
of RTT latency (UDP ping test) as a function of vehicular
speed for the zones in our WiRover dataset in Figure 2(a).
As can be seen from the plot, there was very limited corre-
lation (correlation coefficient mostly close to zero) between
the latency and the vehicle speed. We also plot the CDF of
the correlation coefficients which were measured from each
zone in Madison and on the path from Madison to Chicago
in Figure 2(b). The plot shows that 95% of zones had little
correlation (0.16) between the speed of vehicle and latencies
observed, for typical vehicle speeds ranging from 0 km/h to

120 km/h. The absence of a correlation between the speeds
at which these measurements were collected assures us that
our datasets are representative of cellular network perfor-
mance, which are independent of (typical) vehicle speeds.

3. DESIGN OF WISCAPE FRAMEWORK
In this section we describe the design of WiScape. Fig-

ure 3 summarizes the flow of this section. First, we analyze
our Wide-area datasets to characterize the performance of
cellular networks over a large spatial region to determine if
data is aggregatable in space. In Section 3.1 we use these
datasets to determine the appropriate size of zones for our
measurement framework. In Section 3.2 we use our Spot
and Region datasets comprising of measurements collected
at finer time scales to analyze the performance variations
of the three cellular networks at fine-grained and coarse-
grained time scales at multiple locations. In Section 3.3.1
we determine the number of measurement samples necessary
to determine the bandwidth at a zone with certain degree of
accuracy. Then in Section 3.2 we determine the frequency
with which the measurements should be repeated. Finally,
in Section 3.3 we analyze our Region dataset to ascertain
the feasibility of carrying out client-sourced, coarse grained
performance estimation for cellular networks, involving mul-
tiple clients.

3.1 Aggregation in space (zones)
As it is not feasible to blanket monitor a entire wide-

area wireless network we must aggregate data into spatial
zones. We desire zone sizes which are small enough to ensure
similar performance at all locations inside the zone but big
enough to ensure enough measurement samples can be col-
lected for each zone to properly characterize the network’s
performance. For this purpose we analyze the variation of
TCP bandwidth measurements for NetB collected in Stan-
dalone dataset across city locations by dividing them into
circular zones of radius varying from 50 to 750 meters in
steps of 100 meters. We have not experimented with other
shapes of zones.

In Figure 4 we plot the CDF of relative standard devi-
ation (standard deviation of samples/mean of samples) for
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Figure 2: Latency is weakly correlated with typical
vehicular speeds. In Figure 2(a), the latencies are
mostly around 120 msec, with no observable trend
with increasing speeds. In Figure 2(b), the CDF of
correlation coefficient between latency and vehicular
speed is less than 0.16 in 95% of zones.

all zones, for which we have at least 200 samples per week
over the duration of the measurement study. The left most
curve corresponds to zone size of 50 meters while the right
most curve corresponds to zone size of 750 meters. Further-
more, the relative standard deviation of for 80% of the zones
is around 2.5% for zones with radius of 50 meters and 7%
for zones with radius of 750 meters2. The increase can be
explained by the change in terrain conditions across bigger
zones. As can be seen from the plot, despite increasing zone
radius the relative standard deviation tends to vary only
slightly. We pick a zone radius of 250 meters as 80% of the
zones with 250 meter radius have relative standard devia-
tion less than 4% and 97% of zones have a relative standard
deviation of 8% or lower. The low relative standard devia-

2In Figure 1, some zones have a relative standard devia-
tion greater than 0.3 (mean = 1080 Kbps, dev = 350 Kbs).
These zones in Figure 1 correspond to regions with very few
samples (less than 200 hundred samples) and hence are not
considered while plotting Figure 4.

Figure 3: The flow of text in Section 3, describing
the design choices made in WiScape.
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Figure 4: CDF of relative standard deviation of TCP
throughput across a cross-section of the city with
NetB as a function of increasing zone radius.

tion, implies that the characteristics of locations inside the
zone are mostly similar.

We find that the TCP throughput does not vary signif-
icantly for the cellular network. Specifically, we note that
80% of zones have a relative standard deviation between 2%
and 8% regardless of zone size. Moreover, less than 2% of the
zones have a standard deviation of 15% or higher. Based on
the above observation we selected representative zones with
overall performance variability for NetB that was between
2% and 8% and zones with TCP throughput variability of
the other two networks that was less than 15%. These rep-
resentative zones are used for our Spot data collection, as
seen in Section 3.2.

We also examined data from WiFi-based networks as re-
ported by others (GoogleWiFi [15], RoofNet [16] and us
(MadCity Broadband [17]) in prior work on how throughput
measurements for cellular networks might compare to that
of such WiFi-based networks. Such prior work report high
and sudden variations in achievable throughputs in the WiFi
networks, often due to the use of unlicensed spectrum, ran-
dom access nature, and the characteristic of the spectrum



itself. This is contrast to the more coordinated access meth-
ods and the licensed nature of the cellular spectrum that
provides some performance stability across epochs as de-
fined above. Hence, epochs in WiFi system are likely more
difficult to define than compared to these cellular systems.
The low degree of variability in cellular performance is the
motivation for exploring the feasibility of estimating cellular
data network performance using a small number of measure-
ments.

A closer look: To understand the stability of measure-
ments within individual zones, we use the Static and Prox-
imate datasets. As noted in Section 2, data for our Proxi-
mate dataset was collected by driving around in a car within
a 250 meter radius from corresponding Static dataset loca-
tions. The Proximate dataset, provides us with network
performance measurements from multiple locations in close
vicinity of the locations in Static. The measurements in
Proximate dataset are, thus, representative of the kind of
measurements we can expect to gather from a real deploy-
ment of WiScape system. The data for Proximate dataset
was collected for each zone over a span of 5 months in Madi-
son and 1 month in New Brunswick. In the rest of this sec-
tion, we present results for a single zone from Madison and
one in New Brunswick and omit the results for the remaining
five static locations. We examine how the average through-
put measured from Static subset relates to the throughput
measurements from the corresponding Proximate measure-
ments.

We present the average and standard deviation for the
Static and corresponding Proximate measurements in Ta-
ble 3. From the table we note that the client sourced mea-
surements form a reasonable approximation of the expected
performance at a given location. We observe that the av-
erage UDP throughput of NetB-WI for the ground truth
and the client sourced UDP traces are 876 Kbps and 855
Kbps respectively, where the percentage of error is less than
1%. The observation holds true even in case of representa-
tive zones from New Brunswick which has higher degree of
performance variation compared to zones in Madison.

The jitter values reported in the Proximate dataset are
also close to 7 msec for NetA-WI which matches the corre-
sponding Static dataset jitter value shown in Table 3. Simi-
larly, the jitter for NetB-WI and NetC-WI are around 3 msec
in the Proximate dataset which again matches the Static jit-
ter value of the two networks at the location, as shown in
Table 3. We also have noted the same behavior for NetB-NJ
and NetC-NJ whose jitter values are 2.8 msec and 1.6 msec
respectively. From the above results we find that measure-
ments collected across multiple locations within a zone are
close to each other.

Summary: We choose a radius of 250 meters for zones
as 97% of such zones in Madison have low (8%) relative
standard deviation for TCP throughput for NetB .

3.2 Aggregating in time (zone-specific epochs)
We analyze data from Spot dataset to understand the per-

formance of the three cellular networks over different gran-
ularities of time. As noted in Table 2, the Spot data was
collected at five distinct locations in Madison and two loca-
tions in New Jersey, for all three networks, to characterize
the performance of the cellular networks at a fine granularity.
In particular we study coarse (30 minutes) and fine (10 sec-
onds) time scale variations of different performance param-

eters such as throughput, loss rate etc. and in Section 3.2.2
we explain the mechanism for calculating the epoch duration
for the monitored zones.

3.2.1 Performance at different time granularities
We look at Spot data measurements to characterize the

performance variability of cellular networks. We present
data from two representative locations, one in Madison and
another in New Brunswick where the relative standard devi-
ation (standard deviation/average) of any of the parameters
(TCP and UDP throughput, Jitter, Loss rate) was less than
0.15, for the entire monitored duration. The highest relative
standard deviation of 0.15 was observed for TCP through-
put at both locations. We observed similar properties for the
other four measured locations in Wisconsin and one other lo-
cation in New Jersey, but do not present them in this paper
for the sake of brevity.

Coarse time scale: We present the average throughput,
jitter, and error rates, averaged in 30 minute bins collected
in Madison and New Brunswick in Figure 5(a,b,c,d) and
5(e,f,g,h) respectively. As can be seen from Figure 5, for the
selected location in Madison, the NetA network on an aver-
age offers throughput benefit greater than 50% for both TCP
and UDP over the worst performing network. We also find
that the variance in throughput across all three networks
over the entire duration is less than 0.15 of their long term
average. Moreover, all three networks have a packet loss
rate less than 1% with a very low variation (Figure 5(d)).
We find from Figure 5(c) that the jitter is around 3 msec for
NetB and NetC networks while it is around 7 msec for the
NetA network.

For the location in New Brunswick, looking at Figure 5(e,f),
we find that the TCP and UDP throughput for NetB and
NetC has higher variability than the location in Madison.
Although the overall variation is still lower than 0.15. Akin
to the location in Madison, both networks have low jitter
(less than 3 msec) and packet loss (less than 1%).

Fine time scale: In Table 4, we present the standard
deviation for throughput, jitter, and loss rate calculated for
10 seconds bins and 30 minute bins for all three networks for
both locations, to compare and contrast the network charac-
teristics at fine time scales with coarse time scales.As can be
seen from the table, the standard deviations over coarse and
fine timescales vary significantly. For example, at the loca-
tion in Madison, the standard deviation of TCP throughput
is 211 Kbps at coarse timescales, whereas it is around 377
Kbps at finer timescales, a difference of 159 (377-211) Kbps.
Similar observations can be drawn for other metrics across
all the networks. This difference in standard deviation is
expected as 30 minutes is a large duration of time which
can hide large fluctuations in performance. We can make
similar observation for the measurements collected at the
location in New Brunswick. The high degree of variation at
short time scales effectively rules out the use of small and
infrequent measurements to estimate performance.

Finally, given the relatively low overall jitter (less than 10
msec) and no losses in the networks, we desist from present-
ing further jitter and loss performance results for the sake
of brevity.

3.2.2 Calculating zone specific epochs
To determine the zone specific epoch duration, we need to

determine the granularity of time over which a given met-
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Figure 5: CDF of long term (30 min) average data. Plots (a)-(d) correspond to a location in Madison and
(e)-(f) correspond to a location in New Brunswick. The variation in throughput across all the networks at
two locations is below 15%. Location in New Brunswick shows higher variance in throughput. The average
and variation of both jitter and loss are low across all locations.

NetA-WI NetB-WI NetC-WI NetB-NJ NetC-NJ
Static Proximate Static Proximate Static Proximate Static Proximate Static Proximate

TCP (Kbps) 1242 (196) 1266 (180) 845 (63) 827 (82) 1067 (61) 1005 (78) 1494 (222) 1549 (196) 1850 (201) 1869 (159)
UDP (Kbps) 1241 (101) 1257 (135) 867 (67) 855 (89) 1017 (62) 962 (72) 1690 (290) 1748 (248) 2204 (221) 2245 (166)
Jitter (msec) 7.4 (0.4) 8.5 (0.6) 3 (1.6) 5.4 (1.6) 3.4 (1.2) 5.6 (2.4) 2.8 (1.5) 2.8 (0.9) 1.6 (0.9) 1.5 (0.6)
Loss (%) ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0

Table 3: Table showing the closeness average and standard deviation (in parentheses) of different nearby
locations (Proximate dataset) from the same zones for each network.

ric is stable. A metric should be estimated for each epoch
independently. We use the Allan deviation measure [18] to
determine the epoch for which the metric is stable. The
Allan deviation is used to calculate the frequency stability
of a variable and is defined as the square root of the Al-
lan variance. Allan variance is then defined as the variance
between two measurement values formed by the average of
the squared differences between successive values of a regu-
larly measured quantity. The sampling period of the mea-
surement also forms a parameter which determines the time
granularity at which the Allan deviation is measured. The
difference from standard deviation arises from the usage of
immediate measurement values to calculate the difference
terms, instead, of using the long term mean.

It is mathematically expressed as,

σy(τ0) =

r

PN−1

i=1
(Ti+1−Ti)

2

2(N−1)

Where, Ti are the averaged measurement values collected
at time instance i and N is the total number of available
measurement values. A low Allan deviation implies that the

current values do not differ much from the previous values.
In contrast, large Allan deviation would signify that the co-
herence of the measured metric is changing.

We present the Allan deviation of UDP throughput at
the two zones for the NetB network using the Proximate
dataset in Figure 6 as an example. In the figure, the x-
axis of the plot represents the periodic burst duration while
the y-axis represents the corresponding Allan deviation. We
find that, for the zone in Madison, Allan deviation becomes
the lowest around a time duration of about 75 minutes. This
value is higher (mostly greater than 0.5) at both smaller and
larger values. For the zone in New Brunswick we find that
Allan deviation is lowest around 15 minutes. We pick this
minimum value of the Allan deviation is the epoch duration
for the corresponding zone. Epochs for other metrics can
similarly be determined using the above method.

In WiScape, we collect measurements from clients to get
stable estimates in each epoch for a zone, re-starting this
process as we move from one epoch to the next. Hence,
for the representative zone from Madison, the measurement



NetA-WI NetB-WI NetC-WI NetB-NJ NetC-NJ
Long Short Long Short Long Short Long Short Long Short
(30m) (10s) (30m) (10s) (30m) (10s) (30m) (10s) (30m) (10s)

TCP (Kbps) 211 370 33 102 36 96 126 408 167 414
UDP (Kbps) 77 241 39 82 38 94 153 429 182 365
Jitter (msec) 0.2 0.7 1.3 2.1 0.7 1.6 0.5 1.6 0.5 1.0

Loss (%) ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0

Table 4: Table showing the standard deviation of long term (30 min) and short term (10 sec) data for each
network. The standard deviation of short term data is significantly higher than that of long term data.
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Figure 6: Allan deviation for UDP throughput mea-
surements at a given zone for NetB using Proximate

subset traces. For the measured data, the Allan de-
viation is lowest around 75 minutes, which corre-
sponds to the epoch of the zone.

process repeats every 75 minutes, while for the zone in New
Brunswick it repeats every 15 minutes.

Summary: When aggregated at finer time scales (tens of
seconds), the network metrics vary significantly more, than
when aggregated at a coarser time scale (tens of minutes).
Hence, we use the minimum value of the Allan deviation in
each zone to determine the epoch of that zone. This value
is estimated regularly for each zone.

3.3 Composability of client sourced measure-
ments

We use client sourcing to collect measurements from differ-
ent client devices, leading to estimation of network proper-
ties for each epoch in each zone. Composability of measure-
ments collected from diverse sources would be feasible only
when they are similar (to a certain) extent to one another. In
our work, we have only used laptop or single-board computer
(SBC) based hardware, each equipped with different cellular
modems. This section shows that composability across this
class of clients is, indeed, possible. However, composability
of measurements from a mobile phone and a laptop equipped
with a USB modem may not always work well. This is be-
cause a mobile phone, among its other characteristics, has a
more constrained radio front-end and antenna system, than
a USB modem. Potentially data collected from such devices
with different capabilities need to go through a normaliza-
tion or scaling process. We have not addressed such types of
composition in this work. Instead we suggest that we group
devices into broad categories — mobile phones, laptops or
SBCs with USB or PCMCIA modems, etc., and perform
client-assisted monitoring for each individual category sep-
arately. Given our experimentation was performed using

laptops and SBCs equipped with cellular modems (as this
was the platform used in our wide-area data collection efforts
for various practical and logistical reasons), we demonstrate
that composability within its category. Future work would
require us to re-create some of these results with the mobile
phone category as well as as examining techniques for nor-
malization across categories, a significant effort unto itself.

To demonstrate the closeness of client sourced samples
to stationary data, we evaluate a) if the probability dis-
tribution of the measurements collected at the same loca-
tion (same GPS coordinates) by different clients at differ-
ent times within the time epoch are statistically similar to
the overall long-term distribution at that location and b)
if the probability distribution of the measurement samples
collected by different clients at different locations (within a
bounded distance) during the same time epoch are statis-
tically similar to the overall long-term distribution at that
location. While (a) measures the temporal variability, (b)
measures the spatial variability of the measurement samples
inside a zone.

We measure the similarity of two probability distribution
functions, using the symmetric Normalized Kullback-Leibler
Divergence (NKLD) between the data from the Static dataset
and the Proximate dataset for a given location. The sym-
metric NKLD is a measure of the dissimilarity between two
distributions.

The Kullback Liebler divergence (KLD) quantifies the rel-
ative entropy between two probability distributions which
are generated from a common event. The KLD is zero for
two identical probability distributions. To rectify the asym-
metric nature of the metric we use a symmetric and normal-
ized version of the metric as used in [19]. The normalized
symmetric Kullback Leibler metric,

NKLD(p(x), q(x)) =
1

2

„

D(p(x)||q(x))

H(p(x))
+

D(q(x)||p(x))

H(q(x))

«

where, p(x) and q(x) are the two probability distributions
based on a common set χ.
H(p(x)) =

P

x∈χ p(x)log(1/p(x)) is the entropy of the

random variable x, with probability distribution p(x), and,

D(p(x)||q(x)) =
X

x∈χ

p(x)|log
p(x)

q(x)
|

is the Kullback-Leibler divergence. A small value of NKLD
would signify that the two distributions are “close”. For our
experiments, we take an NKLD value of 0.1 and lower to
signify that the distribution of measurements are similar.
We plot the KLD distributions for UDP throughput for the
NetB network in Figure 7.

Temporal variability of samples: We randomly select
two measurement traces of two clients of progressively in-
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Figure 7: Plot of NKLD for UDP throughput (a) and (c) shows that samples collected at temporally different
instances at same location are highly similar, (b) and (d) shows data collected at spatially different locations
which are in the same zone are highly similar. Plots (a) and (b) corresponds to location in Madison, Wisconsin,
while (c) and (d) corresponds to location in New Brunswick, New Jersey.

creasing time durations with the same GPS coordinates and
calculate the divergence of this distribution with the overall
distribution consisting of all measurements, this process is
repeated across 100 iterations and the average of the NKLD
is calculated. We plot the results in Figure 7(a) and Fig-
ure 7(c). We find that for the location in Madison, by the
time we have accumulated 50 to 60 samples, the NKLD goes
down to a 0.1 signifying that the two distributions are sim-
ilar to each other. For the location in New Brunswick, we
find that the NKLD goes below 0.1 once we have accumu-
lated 80 to 90 samples. Furthermore, the two distributions
become similar once we have gathered around 120 samples.

We need higher number of samples in New Brunswick,
due to the greater degree of variation of its performance
compared to the network in Madison.

Spatial variability of samples: We randomly select lo-
cations which are 50-250 meters apart from each other and
simultaneously start UDP downloads using two clients at
both locations for a duration of 2 minutes. The test is re-
peated at 10 different locations. We plot the divergence of
the distribution of throughput values collected from two lo-
cations in Figure 7(b) for Madison and Figure 7(d) for New
Brunswick. We find that with 80 and 100 measurements in
Madison and New Brunswick respectively the NKLD is less
than 0.1. This signifies that by the time we have accumu-
lated around 100 samples at two locations the distribution
of such samples becomes similar to one another in both the
representative locations.

Based on above results, we conclude that client sourced
measurements can be used as a estimator of the ground truth
for a zone.

3.3.1 Example: client sourced throughput estimation
We intend to determine the minimal amount of measure-

ments necessary to estimate the network’s performance at
a given location with a certain degree of accuracy. In this
section, we use throughput estimation as an example. We
note that similar methods can be used for client-sourced es-
timation of other metrics such as jitter, loss and latencies
etc..

A lot of research has focused on estimating the available
network bandwidth for wired as well as WiFi based net-
works [20, 21]. In contrast, few studies have concentrated
on characterizing the available bandwidth for the cellular

Network-Location UDP TCP

NetA-WI 90 60
NetB-WI 60 40
NetC-WI 40 40

NetB-NJ 120 120
NetC-NJ 70 50

Table 5: Table showing the number of back-to-
back measurement packets to be sent to estimate
TCP/UDP throughput within an accuracy of 97%
of the expected value.

networks. Availability of an accurate and efficient estima-
tion algorithm is vital for client-assisted monitoring.

We experimented with two such bandwidth measurement
tools: Pathload and WBest [20, 21]. To estimate the accu-
racy of these tools we take the average of UDP throughput
measured over 100 seconds for 10 iterations as the ground
truth at that location. We then define relative error as
E = X−GUDP

GUDP

× 100%, where X is the result from available

bandwidth measurement tools (i.e., Pathload or WBest) and
GUDP is the ground truth UDP throughput. In our evalu-
ations we found that neither of the two tools give an ac-
curate approximation. WBest consistently under-estimates
the actual bandwidth by up to 70% while Pathload under-
estimates up to 40%. Similar benchmarking results are also
reported in [22]. Hence, we carry out simple UDP downloads
over a duration of time to measure the network performance.
In the rest of this section, we determine how many such sam-
ples should be sent to fairly accurately (∼97%) estimate the
network throughput at a specific location. We intend to
diagnose the reason behind the estimation inaccuracies for
the two bandwidth measurement tools as part of our future
work.

How many packets necessary? We revisit our TCP
and UDP throughput measurements from our Proximate
datasets to determine the minimum number of packets to
be collected for attaining a maximum accuracy in estimat-
ing the expected performance of a zone.

We select a given number of client collected packets and
calculate their average. We then compare it with the ground
truth throughput at that instant (calculated as mentioned
above). We repeat this process 100 times for a given packet
size. We present the number of packets necessary to at-
tain an accuracy of 97% in Table 5. We find that for the
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Figure 8: Error of WiScape measurements in com-
parison to our extensive measurements collected.

zone in Madison, we need 90 TCP packet measurements to
obtain an accuracy within 97% of the expected measure-
ment for NetA . From the same table, we can estimate the
expected TCP throughput which is within 97% of the ex-
pected throughput by collecting as many as 40 back-to-back
measurement packets for NetC for both TCP and UDP. The
number of packets are marginally higher for NetA as com-
pared to NetB and NetC as the network performance varies
more for NetA clients (Figure 5, Table 4).

For the zone in New Brunswick, we find that we need 120
packets for estimating the TCP and UDP performance of
NetB network. Whereas, for the NetC network we need to
send only 70 UDP and 50 TCP packets back-to-back for a
estimation accuracy of 97%.

Summary: We validate that network performance esti-
mation using a small number of measurements collected by
different clients inside a zone is indeed feasible. Specifically,
we find that for the monitored zone, the distribution of the
observed metric becomes almost similar to that of any other
client present in the same zone (or from the same client at
an earlier time epoch) we have accumulated more than 80
packets. Given an expected cellular data-rate in hundreds of
Kbps, a client can easily finish a measurement in less than
a second.

3.4 Putting it all together
We envision a simple user agent in each client device, e.g.,

as part of the software in the mobile phones or bundled with
drivers of cellular NICs. A measurement coordinator, de-
ployed by the operator or by third-party users, will manage
the entire measurement process. Each cellular device peri-
odically reports its coarse-grained zone (based on associated
cellular tower) to the measurement coordinator3. Based on
this zone information, our measurement coordinator period-
ically provides each mobile device with a measurement task
list.

When a mobile device performs a task, it is required to
collect more precise zone information at which the task is
initiated as well as completed. If the mobile phone has a
built-in GPS receiver, it is possible for it to obtain zone in-
formation quite easily. However, alternate techniques to ob-
tain zone information include triangulation and fingerprint-
ing based techniques, using the cellular, WiFi, or Bluetooth
interfaces [23, 24, 25].

3Current cellular systems already collect such zone informa-
tion from all mobile devices in order to correctly and quickly
route calls and traffic to them.

The rate of refreshing the measurements for each zone
would depend on the coherence period of that zone as de-
termined by looking at the Allan deviation.

For a given zone, once in every coherence time-period, the
measurement coordinator will provide a measurement task
to each active mobile client with a probability, chosen such
that the number of measurement samples collected over each
iteration is sufficient for estimating accurate statistics, as de-
termined by the NKLD algorithm. Once the selected clients
report their measurements, the server checks if the measured
statistic has changed substantially from its previous update
(say by more than twice the standard deviation). In such
a situation the server would update its record for the zone
with the new value.

Validation: To analyze the accuracy of our WiScape
framework, we partitioned our Standalone dataset which
consists of around 400 zones with 200 or more samples, into
two subsets (Client sourced data and Ground truth). For
each zone, we assume that the entire Ground truth set pro-
vides our expected value (consisting of up to 125,000 packets
for various zones). Figure 8 shows the CDF of error in esti-
mation of TCP throughput for the WiScape data from the
Client sourced dataset and the Ground truth data. As can
be seen from the plot, WiScape data has less than 4% error
in estimating the TCP throughput for more than 70% of the
zones. The maximum error in performance measurements is
around 15%, which indicates that WiScape is able to deter-
mine the necessary measurement parameters for each zone
and provide a fairly accurate performance estimate.

Discussion: We note that there is an important trade off
between the volume of measurements collected, the ensuing
accuracy, and the energy and monetary costs incurred. Our
design in WiScape defines one specific design choice in this
multi-dimensional space. Many other alternatives are cer-
tainly possible and would make for interesting exploration
in the future.

4. APPLICATIONS OF WISCAPE
In Section 4.1 we demonstrate how client-assisted moni-

toring of networks can help discover zones with highly vari-
able network performance. Variability in network perfor-
mance can be an indicator of possible network problems.
Hence, client-assisted monitoring can help network opera-
tors short-list zones which need further detailed diagnosis.
Finally, in Section 4.2 we characterize the potential perfor-
mance enhancement for two applications when using coarse
grained measurements. Both applications use more than one
cellular network.

4.1 Helping operators
To ensure that the network performance at the deployed

regions is above a certain quality, the cellular service providers
carry out periodic drive-by tests to validate the performance
of their network. This involves using a car equipped with
network measurement equipment, and then carrying out net-
work performance tests at specific locations. However, such
tests are labor intensive and hence not scalable for wide
area wireless networks. Client-assisted monitoring can help
network operators in this regards by pin-pointing zones with
performance characteristics significantly different than neigh-
boring zones.
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Figure 9: CDF of Relative standard deviation (stan-
dard deviation/average) of TCP throughput for all
zones (with 250 meter radius) and those with more
than 20 days with at least one ping failure.

Identifying locations with variable performance
Let us assume the network operator intends to determine
potential locations with highly variable throughput (say rel-
ative standard deviation greater than 20%). This informa-
tion would be difficult to deduce from a relatively low num-
ber of client sourced measurements because of the fact that
the accuracy of client sourcing depends on low variability
in network performance. We note that while small through-
put tests conducted infrequently every tens of minutes might
miss out on zones with highly variable performance, other
infrequently calculated metrics may be used to detect such
variability. To highlight such a metric, we revisit our Stan-
dalone dataset. As mentioned in Section 2, we present data
for ICMP ping tests in our Standalone dataset. From this
dataset, we first determine zones, with radius 250 meters,
that have multiple ping test failures. In Figure 9 we present
the CDF of relative standard deviation of all the zones with
more than 200 measurements and those zones with at least
one failed ping tests every day, for a period of 20 consecu-
tive days or more. As can be seen from the plot, zones with
20 or more consecutive days with at least one ping failure
have a very high variation in their relative deviation of TCP
throughput. For example, 65% of the links have a relative
deviation of the order of 40%. We also find that zones with
back-to-back ping failures constitute 97% of the zones with
relative standard deviation above 20%. This is in contrast
with the majority of other zones which have less than 1%
relative standard deviation.

Identifying locations for additional provisioning
Coarse grained estimates can also help network operators de-
termine places where additional resources might be needed
to satisfy periodic surge in demands. For example, Fig-
ure 10, shows the network latency of two cellular networks
near a football stadium (80,000 seating capacity) during a
football game. The shaded region in the plot represents the
scheduled time of the football game. As can be seen from
the plot, for the duration of the game the average ping la-
tencies go up from 113msec to 418msec, an increase of the
order of 3.7X for NetB. As the duration is in order of 100s
of minutes, infrequent periodic monitoring can detect the
above event and help operators take corrective measures.
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Figure 10: Network latency (averaged over 10 min-
utes) during a football game. The scheduled time of
the game is covered by the shaded region.

4.2 Improving client performance
To show the potential benefits of a WiScape like system for

clients, in Section 4.2.1 we show that for a large number of
zones the performance of one cellular network is persistently
better than other networks over large duration of time, and
hence observable using infrequent measurements. In Sec-
tion 4.2.2 we explain how such information can be utilized
by clients with multiple cellular connections to choose the
best network of operation for each zone.

4.2.1 Persistent network dominance

We intend to understand if the relative performance char-
acteristics of different cellular networks are persistent over
large periods of time (for each zone). For this purpose, we
define persistent network dominance as follows: when the
lower 5 percentile of the best network’s metric is better than
the upper 95 percentile of other networks in a given zone,
we say the zone is persistently dominated by the best net-
work. The fact that the lowest 5 percentile of performance
of the dominant network is better than the 95 percentile of
the other networks implies that the dominance is persistent
over time and hence observable using infrequent measure-
ments made by a WiScape like system. In Figure 11, we
present the percentage of zones with a persistently domi-
nant network, in terms of RTT latency collected from the
WiRover dataset, as a function of the zone size. As we
see, persistent network dominance is observed in 85% of the
zones and across different zone sizes. The consistently better
performance of one network at a given zone can be explained
by observing that the network performance is dependent on
the base-station location, technology, and traffic load on the
base-station; a combination which would be expected to vary
across different network operators.

We use measurement data from our Short segment dataset
to further investigate the presence of persistent network dom-
inance. The measurements were collected with our vehicle
driving across this stretch of roadway regularly for a period
of 5 months, at average speeds of 55 km/h. We show a part
(10 km) of the road stretch in Figure 12. Each circle cor-
responds to a zone of 250 meters radius and the shade on
the circle corresponds to the network which performs best
in that zone.

We plot average TCP throughput performance of NetA,
NetB, and NetC networks for each zone over entire exper-
iment duration in Figure 13. In conformance with our ob-
servations of persistent dominance in terms of latencies, we
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Figure 12: Map depicting the Short segment dataset
and the dominant network for each zone. Over all
zones we observe that 52% of zones have a dominant
network.

find that for a significant number of zones a specific network
offers better performance on an average than the other two
networks. For example, at zone 20 (as marked in the x-
axis) the performance difference between the best network
gives 42% higher throughput than the next best network
over the entire measurement set. Similarly, the performance
at zone 4 of the best network is almost 30% higher than
others. We also find that multiple zones exist where none of
the networks give clear performance advantage for the en-
tire set of measurements. We identify zones where the lower
5 percentile of the best performing network is better than
the upper 95 percentile of other two networks. The inset
table in Figure 12 shows the number of zones where one
network dominates other networks. From the table we note
that there are 52% of zones where one network gives better
performance than other consistently over the measurement
period. We color the zones in Figure 12 based on which
network dominates it. A white color indicates a lack of a
persistently dominant network.

4.2.2 Application performance improvement
We present two application scenarios which can benefit

from approximate network quality estimates for a specific
location. The first is a client equipped with a mobile phone
that has two or more SIM cards and hence can connect to
any one of two or more alternate cellular networks at a given
point in time. We call this the multi-sim application. Such
phones are cheaply available in the market today, e.g., Sam-
sung Fizz [26] and Jinpeng S3288 [27], and are gaining in
popularity in developing countries like India and China. In
absence of any knowledge of which network gives the best
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Figure 13: TCP performance on each zone across 20
km stretch of road for three monitored networks.

performance at the current location, the clients with such
phones would be forced either to select a network in a ran-
dom fashion or to carry out measurements to ascertain the
network quality for all the networks.

The second application that can benefit from location spe-
cific information is a MAR [4] — a multi-network Internet
gateway mounted on a vehicle that can aggregate bandwidth
from all networks that it simultaneously connects to. The
scheduler in MAR stripes traffic flows to different network
interfaces. While authors in [4] suggest using location spe-
cific network performance information to further optimize
performance by intelligently mapping data requests to inter-
faces based on locality of operation, we highlight the bene-
fits of such a scheme over a simple multi-interface striping
algorithm where all currently active requests from differ-
ent clients are mapped onto different cellular networks in a
round robin fashion.

To illustrate the benefits of coarse throughput estimates
for the above two applications, we consider the following
experiment scenario. A client (either a MAR gateway or
a Multi-sim phone) places back-to-back requests for a set
of pages from the Internet while driving on a road stretch
depicted in Figure 12. In our experiments, the client re-
quested pages from a webserver hosting a pool of 1000 wep
pages with sizes between 2.8 KBytes and 3.2 MBytes, gen-
erated using SURGE [28]. Akin to [4] we also experiment
with popular Web sites by downloading wepages to a depth
of 1 from their starting page. For our experiments we run
the car on the same road-segment (Table 2) multiple times
during the experiment. We compare performance between
a system where data is requested in a round robin fashion
on each network. The other system with a monitoring agent
uses the GPS to determine the location of the vehicle and
based on zone information selects the best network to min-
imize download latency.

Multi-sim Improvements: We present the results in
terms of HTTP latency averaged over ten runs in Table 6.
As can be seen from the Table 6, we can decrease the HTTP
latency by 30% by selecting best performed interface at a
given location. We show the HTTP latency for well known
Web pages in Figure 14(a). As can be seen from the plot, our
scheme gives the maximum improvement for amazon.com
webpage (32% improvement) and minimum improvement for
microsoft.com webpage (13% improvement).

MAR performance improvements: Here we compare
the download latency for the two schemes. We measured
the HTTP latency by running our car with a MAR client



Avg.(in sec) Std.(in sec)

WiScape 87.66 8.33
NetA 124.26 14.90
NetB 158.55 33.69
NetC 145.46 14.89

MAR-WiScape 25.72 3.48
MAR-RR 36.8 6.44

Table 6: Average latency and standard deviation
for downloading 1000 HTTP files. We can improve
HTTP latency by 30% using Multi-sim-WiScape.
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Figure 14: Multi-sim and MAR latency improve-
ments with well known Web pages over round-robin
(MAR).

with 3 interfaces on a 2.4 Km segment of road (from zone
10 to 15 from Figure 13). We measure the performance of
MAR system using network performance information and
while mapping client requests to interfaces in a throughput-
weighted Round Robin fashion (MAR-RR). As can be seen
from Table 6 (last two columns) by using the information
provided by WiScape we can decrease the HTTP latency by
32% compared to MAR-RR.

We have also experimented with well known Web pages
as described above. We present results in Figure 14(b). As
can be seen from the plot, using a locality aware scheme
can improve performance by 37% over a naive round robin
scheme.

We note that the applications can also estimate network
performance through explicit measurements of its own, which
would result in a steady measurement overhead on all the
network interfaces. Besides, applications like MAR would
also need to stop all client traffic thus potentially hamper-
ing performance. In contrast a client-sourcing base approach
would gather this data ahead of time and can simply make
it available to potential clients, at a low overhead. We would
also like to note, that we did not account for multiple sys-
tem level issues, such as energy efficiency, time to switch
between links, or presence of client think time into account
while calculating the performance. Accounting for such is-
sues might lead to changes in achievable benefits that we
present. However, we believe that independent of the spe-
cific metric being optimized (energy or completion time) in-
formation about link performance can always be leveraged
for better performance.

5. RELATED WORK
We compare and contrast our contributions in WiScape

with prior work on two separate fronts.
Prior monitoring research: With the rapid growth of

cellular based Internet connectivity, cellular providers and
third-party developers have started developing client-based

techniques to learn about the properties of these networks.
They include the AT&T’s “Mark the Spot” [29] applica-
tion, 3gtest [9], and applications by Root Wireless [8]. Un-
like these applications, WiScape focuses on a measurement
methodology for client-sourcing that systematically reduces
the number of measurements required across time periods
and zones based on data already collected while ensuring
that collected data is statistically useful.

Other recent work has conducted detailed measurements
of specific 3G cellular networks to understand their perfor-
mance for both static and mobile environments [30, 31]. Lie
et al. presents the characterization of PHY and MAC layer
of 3G network and its impact on TCP performance [30].
Akin to [30] where the authors find the DRC (dependent on
SINR) to vary significantly over large time scales, we also
found a high variation in RSSI over the period of a day.
Similar to [30], we did not find any correlation (0.03) be-
tween the expected application level TCP throughput and
RSSI. In light of the above observation we discarded RSSI
statistics from further consideration.

Similar studies have also been conducted on outdoor WiFi
mesh networks [32, 15]. Again, such prior works are primar-
ily measurement studies and do not focus on our focus of a
client-sourced measurement framework with goals of mini-
mal data collection from diverse clients.

Related applications: The novelty of our work is that
we collected long term city-scale data and built the WiS-
cape framework which harnesses the performance measure-
ment of 3G network to maximize the performance of multi-
network applications, e.g., MAR [4]. Many other vehicular
networking systems have been designed and deployed in re-
cent years, each with different target applications. Exam-
ples include VanLAN [33, 34], a WiFi based Internet service
into vehicles [33, 34], PluriBus [35, 36] a WiFi, 3G, and
WiMAX based system with similar goals but with different
algorithms, DieselNet [37, 38] that mostly focused on delay
tolerant networking and opportunistic Internet services.We
believe that many of these systems could potentially lever-
age client-based data collected by WiScape to better opti-
mize their data striping algorithms (analogous to our design
of improvements to MAR).

6. CONCLUSION
In this paper we presented the design for a client-assisted

network monitoring system. Through extensive measure-
ment over a period of more than one year, in and around
Madison and small parts of New Jersey, we have validated
the possibility of carrying out client assisted network mon-
itoring. With experimentation we show how client-assisted
network monitoring can help cellular network users and op-
erators. We believe this work is merely a starting point in
larger scale measurements and network monitoring, span-
ning multiple cities, state, or across the whole country.

Cellular data traffic volume is set to increase dramatically
in near future, placing enormous load on the infrastructure.
Moving forward, we intend to expand the spatial and tempo-
ral reach of our client-assisted cellular data network monitor-
ing, with the goal of understanding the effects of increased
cellular networks on performance.

We hope to organically grow our efforts in the months and
years to come. Specifically, we intend to extend our study
to bigger cities, where high number of users, would present
a more challenging monitoring problem.



To deploy our ideas developed in WiScape, we plan to inte-
grate our proposed sampling techniques described in this pa-
per into a publicly available cellular network based measure-
ment and monitoring tool called Network Test [39], available
for both the Android and iPhone platforms. Measurement
statistics collected from the application would help us under-
stand and address issues related to client sourced network
performance estimation mentioned in Section 3.3 such as
effects of device heterogeneity, effect of constrained energy
resources in cellular phones etc.

7. ACKNOWLEDGEMENTS
We would like to thank Shan-Hsiang Shen, Lance Har-

tung, Hoewook Chung for their help in collecting measure-
ments. We thank the Madison Metro transit and Van-Galder
bus company, for letting us use their buses to collect mea-
surements. Sayandeep Sen, Jongwon Yoon, Joshua Hare,
Justin Ormont, and Suman Banerjee have been supported in
part by the US National Science Foundation through awards
CNS- 1059306, CNS-0855201, CNS-0747177, CNS-0916955,
CNS-1040648, and CNS-1064944.

8. REFERENCES
[1] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan,

D. Moll, R. Rockell, T. Seely, and C. Diot. Packet-level
traffic measurements from the sprint ip backbone. In IEEE
Network, 2003.

[2] D. Kotz and Essian K. Analysis of a campus-wide wireless
network. In MobiCom, 2002.

[3] Yu-Chung Cheng, John Bellardo, Péter Benkö, Alex C.
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