MobilityFirst Architecture and Protocol Evaluation on GENI

November 3, 2011

WINLAB
MobilityFirst Project: Collaborating Institutions

(LEAD)

D. Raychaudhuri, M. Gruteser, W. Trappe, R. Martin, Y. Zhang, I. Seskar, K. Nagaraja, S. Nelson

A. Venkataramani, J. Kurose, D. Towsley

M. Reiter

S. Bannerjee

W. Lehr

Z. Morley Mao

X. Yang, R. RoyChowdhury

G. Chen

B. Ramamurthy

Project Funded by the US National Science Foundation (NSF)
Under the Future Internet Architecture (FIA) Program, CISE

+ Also industrial R&D collaborations with AT&T Labs, Bell Labs, NTT DoCoMo,, Toyota ITC, NEC, Ericsson and others
Vision: Mobility as the key driver for the future Internet

- Historic shift from PC’s to mobile computing and embedded devices...
 - ~4 B cell phones vs. ~1B PC’s in 2010
 - Mobile data growing exponentially – Cisco white paper predicts 3.6 Exabytes by 2014, significantly exceeding wired Internet traffic
 - Sensor/IoT/V2V just starting, ~5-10B units by 2020

Source: Cisco, WiMobile, 2010

~2B servers/PC’s, ~10B notebooks, PDA’s, smart phones, sensors

~1B server/PC’s, ~700M smart phones

~2010

~2020
Architecture: MobilityFirst Network Overview

- MF Arch designed to meet emerging mobile/wireless service requirements at scale
- Key MF protocol features:
 - Separation of naming & addressing
 - Public-key globally unique identifier (GUID) and flat network address (NA)
 - Storage-aware (GDTN) routing
 - Multicast, multipath, anycast services
 - Flexible inter-domain boundaries and aggregation level
 - Early binding/late binding options
 - Hop-by-hop (segmented) transport
 - Support for content & context
 - Strong security and privacy model
 - Separate mgmt & computing layers

- Several new protocol components, very distinct from today’s TCP/IP ….
Architecture Concepts: Name-Address Separation

- Separation of names (ID) from network addresses (NA)
- Globally unique name (GUID) for network attached objects
 - User name, device ID, content, context, AS name, and so on
 - Multiple domain-specific naming services
- Global Name Resolution Service for GUID → NA mappings
- Hybrid GUID/NA approach
 - Both name/address headers in PDU
 - “Fast path” when NA is available
 - GUID resolution, late binding option
Architecture Concepts: Global Name Resolution Service for Dynamic Name <-> Address Binding

- Fast Global Name Resolution a central feature of architecture
 - GUID <-> network address (NA) mappings
- Distributed service, possibly hosted directly on routers
 - Fast updates ~50-100 ms to support dynamic mobility
 - Service can scale to ~10B names via P2P/DHT techniques, Moore’s law

Diagram: Global Name-Address Resolution Service

- Host Name, Context_ID or Content_ID <-> Network Address
- Decentralized name services Hosted by subset of ~100,000+ Gateway routers in network
Protocol Design: Direct Hash GNRS

- Fast GNRS implementation based on DHT between routers
 - GNRS entries (GUID <-> NA) stored at Router Addr = hash(GUID)
 - Results in distributed in-network directory with fast access (~100 ms)

Global Prefix Table

<table>
<thead>
<tr>
<th>Prefix</th>
<th>AS #</th>
<th>Next-hop address</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/8</td>
<td>1</td>
<td>8.8.8.8</td>
</tr>
<tr>
<td>67.10/16</td>
<td>55</td>
<td>67.10.1.1</td>
</tr>
<tr>
<td>44/8</td>
<td>101</td>
<td>44.32.1.1</td>
</tr>
</tbody>
</table>

Diagram: User A (GUID = 10)

- Update GUID=10
- Update/GUID=10
- Resolver/Router
- Update Flow
- Query Flow

Cumulative Distribution Function (CDF)

- K = 1, 95th Percentile at 91 ms
- K = 2, 95th Percentile at 202 ms

Internet Scale Simulation Results

Using DIMES database
Protocol Design: Storage-Aware Routing (GSTAR)

- Storage aware (CNF, generalized DTN) routing exploits in-network storage to deal with varying link quality and disconnection.
- Routing algorithm adapts from switching (good path) to store-and-forward (poor link BW/short disconnection) to DTN (longer disconnections).
- Storage has benefits for wired networks as well.

![Diagram of Storage-Aware Routing](image)
Example: GUID/Address Routing Scenarios – Dual Homing, Partial Disconnection

- The combination of GUID and network address helps to support new mobility related services including multi-homing, anycast, DTN, context, location …
- Dual-homing scenario below allows for multiple NA:PA’s per name

GUID/Address Routing Scenarios – Dual Homing, Partial Disconnection

GUID & SID
Send data file to “Alice’s laptop”

Current network addresses provided by GNRS;
NA1:PA22 ; NA7:PA13

Router bifurcates PDU to NA1 & NA7
(no GUID resolution needed)
Protocol Design: MF Stack

- Core elements of MF protocol stack
 - GUID services layer, supported by control protocols for bootstrap & updates
 - GUID to network address mapping (GNRS) for dynamic mapping of GUID
 - Generalized storage-aware routing (GSTAR) with supporting control protocols
 - Reliable hop-by-hop block transfer between routers
 - Management plane protocol with its own routing scheme
 - Multiple TP options and plug-in programmable services at GUID layer
Prototyping and Evaluation: Execution Summary

Phase 1
- Context Addressing Stack
- Content Addressing Stack
- Host/Device Addressing Stack
- Encoding/Certifying Layer
- Global Name Resolution Service (GNRS)
- Storage Aware Routing
- Locator-X Routing (e.g., GUID-based)
- Context-Aware / Late-bind Routing

Phase 2
- Context Addressing
- Content Addressing
- Host/Device Addressing
- Encoding/Certifying Layer
- Global Name Resolution Service (GNRS)
- Storage Aware Routing
- Context-Aware / Late-bind Routing
- Locator-X Routing (e.g., GUID-based)
- IP Routing (DNS, BGP, IGP)

Phase 3
- Map showing geographic distribution

Prototype
- Standalone Modules

Evaluation
- Simulation and Emulation
- Integrated MF Protocol Stack and Services
- Smaller Scale Testbed

Deployable s/w pkg., box
- Distributed Testbed
 E.g. ‘Live’ on GENI
MobilityFirst Prototype: Click-based Router

- Linux-based implementation with Click modular router as forwarding engine
- Two-level abstraction: fast path as Click elements, slow path as user-level processes (control and support services)
MobilityFirst Prototype: Android/Linux Client Implementation

- **Device**: HTC Evo, Android 2.3
 - Unbranded and *rooted*
 - Development: SDK, NDK, flash a modified kernel (if required)
 - WiFi, WiMAX interfaces

- **Modules in Android’s MF stack**
 - MF-socket API - user level library
 - Transport layer
 - Storage aware routing
 - SHIM layer support for multi-homing
 - 1-Hop reliable data transfer

- **MF-socket API**
 - open, send, send_to, recv, recv_from
 - User policies for resource use and intentional data receipt
MobilityFirst Prototype: Network Architecture

- Edge networks NA-1, NA-2 connected to global core network
- Each of NA-1, NA-2 are contained MF routing domains
- Each WiMAX BSS and WiFi AP is associated with a MF Router
- Node a is multi-homed within a network
- Node c is multi-homed across 2 networks

Ad hoc networks: Nodes can form ad hoc networks which are named and can attach to existing networks to be globally reachable themselves
GENI Deployment: Phase 3 on Multiple Sites

Deployment Goals
- Large scale, multi-site
- Mobility centric
- Realistic, live

Mapping onto GENI Infrastructure
(ProtoGENI nodes, OpenFlow switches, GENI Racks, DieselNET buses, WiMAX/outdoor ORBIT nodes)

Legend
- Internet 2
- National Lambda Rail
- OpenFlow Backbones
- OpenFlow
- WiMAX
- ShadowNet
- MobilityFirst Router
- Mobile Hosts
- Static Hosts
GENI Deployment: WiMAX and WiFi Edges at Rutgers and BBN

ProtoGENI Backbone

- WiFi AP
- WiMAX BSS
- MF Router + Name Resolution Server
- Android Client w/ WiMAX + WiFi
- Linux PC/laptop w/ WiMAX + WiFi
- Vehicular node w/ WiMAX
- Sensor node
- MF Sensor GW
GEC-12 Experiment: Overview

- Network: Edge networks connected to Protogeni backbone
 - WiFi and WiMAX at edges. Mobile hosts and access network.
- Deployed MF components:
 - MF prototype router with Storage Aware Routing and Name Resolution Service
 - MF Clients including Linux PC/laptops/Android Phone (and vehicular nodes)
- Applications: Edge to edge content delivery
- Demonstration Focus:
 - Multi-homing - convergence of WiFi and WiMAX
 - Network-level adaptation to mobility (varying link quality) and disconnection
Experiment Setup: Proposed MF Network Graph

Rutgers Wireless Edge

ProtoGENI Backbone

BBN Wireless Edge

ProtoGENI host running MF Router
GENI Deployment: Physical Topology

- Washington
- NLR Seattle
- Wisconsin
- NLR Denver
- NLR Chicago
- Rutgers
- New York
- BBN
- Stanford
- Georgia Tech.
- Clemson
- Los Angeles
- Detroit
- Chicago
- Indiana
- Seattle
- SUNW
- INDIAN
- SUNY-C
- Wisconsin
- Georgia Tech.
- NLR
- I2 OF Switch
- VLAN 3715
- NLR OF Switch
- VLAN 3716
- Edge OF Switch
GENI Deployment: Mapping to Logical Topology
Application: Content Delivery to Mobile Hosts

Mappings @ pg51.emulab.net
Time: 1320334245

Guids:
- GUID=1
- GUID=2
- GUID=3
- GUID=4
- GUID=5
- GUID=6
- GUID=7
- GUID=101
- GUID=201

Content Publisher
WiMAX BTS

BBN Wireless Edge

WiMAX BTS

Rutgers Wireless Edge

ProtoGENI host running MF Router

NLR path using VLANs 3716, 3799 (Clemson)

I2 path using VLANs 3715, 3745(BBN), 3798 (Clemson)
Visualization

Data collection framework with API, monitors, filters and data warehouse
E.g., Orbit Measurement Library (OML)

What’s on?
1. Network statistics
2. Packet and flow tracing
3. Routing events
4. Application events

Network map credits: ProtoGENI’s Flack tool. http://protogeni.net/trac/protogeni