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Abstract—For several years, web caching has been used to
meet the ever-increasing Web access loads. A fundamental
capability of all such systems is that of inter-cache coordination,
which can be divided into two main types: explicit and implicit
coordination. While the former allows for greater control over
resource allocation, the latter does not suffer from the additional
communication overhead needed for coordination.

In this paper, we consider a network in which each router has
a local cache that caches files passing through it. By additionally
storing minimal information regarding caching history, we de-
velop a simple content caching, location, and routing systems that
adopts an implicit, transparent, and best-effort approach towards
caching. Though only best effort, the policy outperforms classic
policies that allow explicit coordination between caches.

I. INTRODUCTION

For several years, web caching has been used to meet the
ever increasing Web access loads [1]. More recently, advocates
of content-centric networking [2], [3] have argued for raising
the level of abstraction of the atomic unit of data that is stored
and forwarded within the network from a packet to a file, or
other higher-level content unit. In both cases, content storage,
location, and forwarding within the network are of central
concern.

Although content storage (caching) systems come in many
forms and flavors, one fundamental capability of all such
systems is that of coordination, which can be divided into two
main types: explicit and implicit. With explicit coordination,
caches share their state (or state summaries), and additional
information such as access patterns and content popularity [4]
with each other. Using this information, each cache determines
what to cache, when to do so, and what to drop. The main
cost of such explicit schemes is the additional communication
overhead needed for coordination as well as coordination
algorithms that can be quite complex and sophisticated.

Implicit coordination, on the other hand, removes the need
for such elaborate reporting protocols. Instead, it relies on the
local cache management policies [5], as well as the relative
position of each cache in the network [6], to achieve good
performance. An example of such implicit coordination are
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hierarchical cache systems [7], where caches are arranged in
a tree-like structure. Requests start out at the leaves of the
tree, and are routed towards the root until the content is found,
either in the tree or at an external source (via the root) when
the content is not present in the tree. The system topology
provides for implicit cache coordination to take place, as the
position of each cache will cause it to hold different types of
files and so manage resources efficiently.

In this paper, we describe a simple content caching, location,
and routing system that adopts an implicit, transparent, and
best-effort approach towards caching. We consider a network
scenario in which each router has a local cache that caches
files passing through it. Requests for a file are routed initially
towards the source of the file, and en-route check at each router
whether a copy of the file is present at its cache, and download
it directly from there if found. Such caches are commonly
referred to as Transparent En-Route Caches (TERC) - ”trans-
parent” in that neither the user nor the server are aware that
any such cache exists, and ”en-route” since they are accessed
during a standard request, on the path to the server [8][9].
The Breadcrumbs approach described in this paper is “best
effort” in that coordination is implicit, and forwarded requests
may (or may not) locate content while being routed among
the caches; if not located, content can always be eventually
retrieved from the source. Only a minimal amount of per-file
information (termed “breadcrumb”) is used in locating content.
A breadcrumb stores the most recent direction and time that
a file was forwarded in the past, thus tying content routing
with content location and caching. We find that although our
system promises best-effort only, it performs well even when
compared to several classic, more stateful, explicit-cooperation
cache systems.

The main contributions of this paper are:
• We describe the architecture of our Breadcrumbs system,

and present a best-effort caching policy designed for
forwarding queries in search of content, that utilizes this
architecture. We demonstrate the utility of this policy for
sample network models.

• We compare the performance of our best-effort policy
with other policies, including those that are more stateful.
We find that our policy performs extremely well in
comparison, locating cached content more frequently than



policies that use explicit coordination between neighbor-
ing caches.

• We present a description and preliminary analysis of the
implicit cache coordination that is a result of our query-
forwarding policy. Specifically, we show that neighbors
of a cache respond to changes in its incoming query
distribution in a manner that results in a form of load
balancing among neighbors caches.

The rest of the paper is structured as follows. In Section
II we discuss related work. In section III we describe the
Breadcrumbs system, devise a simple Best-Effort Content
Search (BECONS) policy, that allows for content to be located
in a general caching network, and present a concrete example
of this policy. In section IV we take a look at the reaction
of a cache’s neighbors to changes in it’s incoming query
distribution, and present guidelines for understanding the inter-
action between these neighboring caches. Section V presents
simulation results, that evaluate the performance of BECONS
and compare it to several, both explicitly-coordinated and
implicitly-coordinated, cache networks.

II. RELATED WORK

There have been several proposals for developing ubiquitous
global caching systems [5][10], and the reader is referred
to the technical report [12] for a more complete survey
of these. In our work here, we address an architecture in
which caching takes place in the network itself, and cache
management is done in a distributed manner. Our approach
uses Transparent En-Route Caches, in which content is stored
at caches associated with routers, and requests for files check
the contents of these caches en-route to a known source for
the content. Most of the research regarding such caches has
focused on how to place a small number of these in an
efficient way [8] and where to cache specific objects [4], and
has generally addressed the question in a limited number of
topologies. In our work here we utilize TERCs that have been
augmented to store a minimal amount of caching and routing
history.

A framework similar to the one we discuss here is discussed
extensively in [5]. Here, the authors solve the problem of
efficient cache replacement by introducing an adaptive caching
system named ACME. ACME uses machine learning tech-
niques in order to determine when and what to cache locally,
without explicit communication between caches. BECONS
and the Breadcrumbs system differ from ACME in that we use
intelligent query routing, instead of adaptive caching, in order
to improve performance. In this sense, the two architectures
are orthogonal to one another, and it is possible that combining
them would be advantageous. Such a task is beyond the scope
of this work.

It has been shown [6][13] that, in 2-level hierarchical cache
systems, performance can be improved by using different
cache replacement techniques at different levels. This obser-
vation becomes less useful in our model, as the parent-child
structure of the hierarchy changes w.r.t. different nodes in the

network [12]. In our work, we assume therefore that all caches
are using the commonly chosen LRU policy.

III. BREADCRUMBS, AND WHERE THEY LEAD

A. Basic architecture

We consider a caching network where each node - a router
with an associated cache - sets aside some of its cache space
for the purpose of storing routing history, or breadcrumbs
(BC), of previously seen files. Each BC is a 5− tuple entry,
indexed by a global file ID (FID), containing the following
information:
• ID of node from which the file arrived.
• ID of node to which the file was forwarded.
• Most recent time the file passed through the node.
• Most recent time the file was requested at the node.
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Fig. 1. Breadcrumbs example

In the simple case portrayed in Figure 1, file f1 was sent
from the source to node A and along the route A − B −D,
and finally delivered to the user that is connected to node D.
The source (server) and destination (user) of the file do not
use such caches, signified by entering null for entries in the
tuple that refer to these non-router locations. When the file
is first cached, we enter -Inf as the most recent request time.
Thus, as the file is downloaded, it leaves behind it a trail
of breadcrumbs at the caches along its download path. As a
BC requires very little in terms of storage, we assume for
now that a BC for each file can be maintained at each cache
indefinitely, though in practice they can be dropped once they
become invalid, as explained later.

To begin our discussion of the breadcrumbs architecture,
let’s consider a request for a file. This request will be routed
towards the publicly-known source of the file. En-route to the
source, it may encounter a router with a breadcrumb for that
file, thus intercepting a trail of breadcrumbs for that file. At
this point, the query could be satisfied locally, if the file is
contained in the intercepting router’s cache. Alternatively, the
query can be routed up or down the breadcrumb trail in an
attempt to locate the file. Note that the file can always be found
by following the breadcrumb trail upstream to the source, but
that the file may also be found (possibly faster) downstream, as
discussed below. A similar notion of routing towards a source,
but then exploiting state found at an intercepting node is used
in multicast tree construction in core-based multicast routing
trees [14].

An obvious question that arises from this architecture is
in which direction to follow a trail: upstream, towards the



last origin of the file, or downstream, in the same direction
as the file was last sent. In what follows we focus on the
scenario in which the file originated from some public source,
and the trail was discovered by first routing towards the source.
Heading upstream is thus equivalent to routing towards the
source, where the file is always available.

Cache replacement schemes play a large part in determining
where queries should be routed. In this work we assume
that the replacement policy is LRU, which rewards frequent
requests for a file by keeping it in the cache longer (see [12] for
a discussion of other replacement policies). For such policies,
nodes downstream have seen the file more recently and thus
the file has a higher probability of being located there, but
only when routing upstream is there a certainty that the file
will be found (perhaps at the source).

A useful content-search algorithm in such a system would
take into consideration, at each node, the time that elapsed
since two critical events: most recent caching of the file at the
node, and most recent request for the file at the node. When
a file is cached en-route to some destination, it creates a new
trail of cached copies. When a file is requested at the cache
and the request is forwarded down a breadcrumb trail, it will
refresh the file at the node where it is found (if it is found),
and extend it’s time-to-live in that cache. Both of these factors,
therefore, can serve as good indicators of the probability of
finding the file downstream.

Based on these observations, we propose the following Best
Effort CONtent Search (BECONS) query routing policy. Let
c be some cache-node, and assume a query qf arrived at time
t, discovering that f is not present at c. Then, for some set of
values Tf , Tqf

, node c forwards qf downstream if-and-only-if
1) File f was cached or refreshed (via successful query) at

c within [t− Tf , t]; or
2) A qf query passed through c within [t−Tqf

, t] and sent
downstream.

This policy does not involve any explicit communication
between neighboring caches, though Tf and Tqf

can be
different for each node and/or file. In the following section
we demonstrate, however, that even a simple version of this
policy can be quite useful in locating content in the network.

B. S-BECONS: description and analysis

In this section we present Simple BECONS (S-BECONS),
a specific instance of the general BECONS policy, and an-
alyze two of its attractive properties: trail stability and trail
invalidation. Let c1, ..., cn be a downstream trail and assume
a query has begun its search downstream at time t = 0.

Definition 1: A BC is said to be valid if it is being used to
forward unanswered queries. A node becomes invalid, when
using BECONS, if the interval between file/query arrivals is
too long, in which case the BC times out; or if the node
determines somehow that the file is not present downstream
anymore.

Definition 2: A trail c1, ..., cn is said to be broken if there
exist indices 1 < i < j < k < n s.t. the breadcrumbs at ci

and ck are valid while the breadcrumb at cj is invalid.

Definition 3: The downstream trail c1, ..., cj is said to be
stable if it does not become broken during a downstream
search. A query starting a search along a stable downstream
trail will therefore end its search at an invalid BC only if all
BCs further down are invalid.

Definition 4: A policy is said to have trail invalidation built
in to it, if there is a way in which ci (1 ≤ i ≤ n) can determine
that the entire downstream trail (starting from it) does not
contain a copy of the file.

Consider now a simple instance of BECONS, termed S-
BECONS (Simple BECONS), that for each file f uses the
same Tf and Tqf

at all caches. With S-BECONS, if a query
reaches a node with an invalid BC, the query is (re)routed
towards the source. We require that Tf ≥ Tqf

, since a new
file download causes the file to be cached at every cache in the
trail, whereas a new query may or may not refresh it’s presence
in some nodes. Finally, we make the following assumptions
about the network properties:
• The propagation and queuing delay at links and routers

(respectively) are constant.
• Let hf be the delay associated with sending a file a single

hop, and hq the delay associated with forwarding a query
one hop and checking the content of a cache. Then hf ≥
hq . This is a reasonable assumption, as files are assumed
to be much larger than a query.

Based on the assumptions mentioned above, we make the
following two claims, proven in the technical report [12].

Theorem 1: Let c2 be a downstream neighbor of c1. With
S-BECONS, c1 can determine trail invalidation for f if it
receives a query qf from c2.

Theorem 2: The downstream trail of a S-BECONS bread-
crumb trail is stable.

There are many advantages to a forwarding policy that
ensures stability and has the capacity for trail-invalidation.
Stability ensures that a search downstream will cover all valid
breadcrumbs in the trail while searching for the file, while trail
invalidation ensures that queries are not sent along a trail with
no cached content.

Additionally, we observe that a consequence of trail stability
is that every trail has a single border node - a node on the trail
such that a query ariving to a node that is downstream from the
border node will have the least expected cost when forwarded
downstream, while a query arriving upstream will have the
least expected cost when forwarded upstream. Stability ensures
this since otherwise the trail would be broken at some point.
The existence of such a node causes all queries qf intercepting
the trail lower than the border node to be forwarded down until
the file is located. If it is, the cache containing this file will
enjoy a considerable stream of queries qf , which in turn will
allow it to keep f stored for an extended period of time.

C. File download path

Once a cached copy is discovered, it is downloaded to the
user that requested it. For this download, the file may be routed
to its destination in two ways:



• Download Follows Query (DFQ) - the file backtracks
along the route the query took.

• Download Follows Shortest Path (DFSP) - the file is
sent along the shortest path to the destination.

These download policies have different delays associated with
them, but more importantly, they determine the new locations
where the file will be re-cached on its way to the destination.
Let c0 be the node where the trail was first intercepted. Here
we argue that DFSP is the preferred policy, by observing the
effect of each on node c0: DFQ will have the file cached there
on its way to the user, while DFSP will plot a new path to
the user, possibly not containing c0. The importance of this
difference is that with DFSP c0 has refreshed its BC with
the query and will thus continue to forward future queries
downstream in the same direction. As we discussed in the
previous section, if the flow of queries is high enough, this can
ensure with high probability that a copy shall remain cached
downstream. With DFQ, on the other hand, the file passes
through c0 on its way to the user, creating a new breadcrumb
trail and changing the direction of future query forwarding,
thus preventing a critical mass of queries to persist over time at
a specific node. This behavior is supported by the simulations
we performed (section V).

IV. IMPLICIT LRU CACHE COORDINATION

Our BECONS query forwarding policy modifies the direc-
tion in which queries are routed in order to locate cached files
in the network. A modification will occur only when the rate
of queries qf is above a certain threshold, as expressed by
Tf and Tqf

. When such a change in routing takes place, this
will cause a sudden increase in queries coming in to nodes
downstream. It is not clear, however, how neighboring nodes
will react to such an influx. Therefore, given a node x that
experiences an increase in queries of type qf , we would like
to know how the combined rate of qf at node x is affected,
as x’s neighboring nodes react to this change at x.

A network cache can be thought of as a query filter, allowing
incoming queries to move on to the next hop only when a
cache miss occurs. This filter tends to be tighter, and allow a
smaller fraction of queries of type qi to proceed, as qi takes
up a larger part of the incoming query distribution. Formally,
assume that the steady-state distribution of arriving queries
is p = (p1, ..., pn) where pi is the probability that the next
request will be for file fi, and

∑n
i=1 pi = 1. If ri is the rate

of such requests, R = {r1, ..., rn} r =
∑

r′∈R r′, we get
pi = ri/r. Then, as pi increases the probability of a cache
miss decreases.

The probability of a cache miss for qj monotonically
increases w.r.t. the arrival rate of qi (j 6= i). As ri increases,
fi takes over a cache slot for longer stretches of time and in
such a manner forces other files to be dropped more frequently.
Let Ix(i) (Ox(i)) be the incoming (miss) rate of queries qi at
node x. Also, for any parameter y, let +[y] (−[y]) express an
increase (decrease) in the parameter. Using this notation, we
can write that for any cache x,

+[Ix(i)] ⇒ +[Ox(j)] (j 6= i) (1)

Reducing the incoming rate of requests for fi will have
the opposite effect as well. In what follows we demonstrate
that this simple observation leads to a sophisticated type of
implicit coordination between neighboring caches. For lack of
room we present here the analysis for the case of 2 nodes
only. A detailed discussion of a 3-node network is presented
in the technical report [12]. We conjecture there that the 3-
node case is sufficient to express the basic behavior of large
networks, and leave an extensive discussion of the problems
and methodologies presented here for future investigation.

Consider, then, the case of two neighboring nodes, x, y.
Cache misses of q1 at node x are forwarded to y, and cache
misses of q2 at node y are forwarded to x. We refer to
such miss streams moving in opposite directions as opposing
streams. We observe the following behavior:

Lemma 1: +[Ox(1)] ⇐⇒ +[Oy(2)]
Proof: An increase in the output of node x (wlog) will

lead to the following series of rate changes:

+[Ox(1)] ⇒ +[Iy(1)] ⇒exp.(1) +[Oy(2)]

The increase in the miss rate at node y will have the same
effect on node x.

This behavior is one of reciprocity - if x increases the
query load on node y, y in return increases the query load
on node x, but always using queries for a different set of
files. Reciprocity can also suggest what a new steady-state of
the system may look like. As x sends more of the load for q1,
y reacts by sharing some of the load for q2 with node x in
return. The converse tendency can be seen to exist when there
is a decrease in miss rates from one node. From this result we
get the following important property as well:

Theorem 3: +[Iy(1)] ⇐⇒ +[Ox(1)]
Proof: We’ve seen that +[Iy(1)] ⇒ +[Oy(2)], and

Lemma 1 completes the proof.
The importance of Theorem 3 is that x increases the rate

of q1 being sent to y as a result of the original increase at
y, even though the increase might have originated from a
node other than x. Thus, we observe here an implicit form
of coordinated load-balancing between neighboring caches:
as node y dedicates more resources to store f1, some of its
neighbors increase the rate of q1 queries that are sent its way.
This increase in queries has the direct effect of reducing cache
misses for q1, allowing y to specialize in storing this file. At
the same time, node x is free to dedicate more resources for
storing other files, such as f2.

Another important observation is that the reciprocating
behavior of y’s neighbors does not depend on the state at these
neighbors. To understand this, note that the query miss rate for
a given file is not monotonic with the incoming rate of queries.
When pi → 0, the miss rate is bounded by the incoming rate
which is going to 0, and when pi → 1, cache misses become
rare for LRU caches and eventually go to 0. This makes the
behavior of such systems difficult to predict. However, from



Lemma 1 we see that the miss rate for opposing miss streams
are a monotonic function of each other. This property can
help in modeling the behavior of a network in many ways.
For instance, it implies that it is enough to know the changes
in the miss stream of a single cache, in order to predict the
type of change this will cause in the opposing streams from
its neighbor, without having knowledge of the specific state at
this neighbor.

In [12] we discuss the specific states that LRU caches can be
in, and present additional support for the argument that with
BECONS and similar policies node will tend to specialize
in certain files, keeping them in the cache for longer and
lending the system more stability than otherwise available.
Further development of this high-level approach to cache-
system analysis is left for future research.

V. SIMULATIONS

As part of evaluating the behavior and performance of the
Breadcrumbs network, we simulated and compared the behav-
ior of several routing and cache-replacement algorithms. We
built an event-driven cache-network simulator that generates
queries at every node, modeled as a Poisson process. Both
the location of the public file sources and the number of
files assigned to each were chosen at random (uniformly). We
evaluated performance over a non-congested system, allowing
delays in the system to be constant, and leave a more load-
dependant analysis for future work. Details of the simulation
parameters can be found in the technical report [12].

Requested files from each node were selected at random,
using the same distribution at each node, for which we
chose both uniform and zipf. For every request sequence, we
simulated the system behavior using different combinations
of routing policies and cache replacement algorithms. Specif-
ically we considered the simple case of routing to the source,
as well as when using S-BECONS with either DFQ and DFSP.
We also compared these to two cases of explicitly coordinated
caching systems, without S-BECONS:
• A file enters a cache only if it is not located in any direct

neighbor. A file is dropped from the cache using LRU,
with preference to drop a file that is also cached in one
of the neighbors.

• Same policy, but considering only the next cache en-route
to the source of the file considered for caching/dropping.

We measured performance here in terms of reduction in
query load at the file sources. We found that DFQ performed
approximately the same as the simple, route-to-source policy,
and so we present here our results only with regards to DFSP.
Figure 2 depicts the relative aggregate number of downloads
from all sources as a function of cache size and policy. We
simulated a system with 300 distinct files, when cache sizes are
10, 20, 30 and 40. As can be seen from the results, S-BECONS
performs well in comparison to explicitly-cooperative systems,
and outperforms them when the cache size is relatively small.
This can be explained by noting that explicitly-cooperating
caches show performance gains mainly due to the fact that a
group of caches acts as a single larger cache. When the cache

size is relatively small compared to the number of different
files, small cache groups cannot show large performance gains.
Using Breadcrumbs, a decrease in cache size will mostly
affect the time to locate and download content, rather than
making it unavailable. In a real system the cache size will be
considerably smaller than the number of files in the system, so
Breadcrumbs should prove to be a more effective and scalable
solution than explicit cooperation. Additional results can be
found in the technical report [12].
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